Newsletter

Pollen

HOME

Organic farming product Package: 450g
There is available
Rating:3.00, Votes:52
  • Pollen 450 g
    Pollen 450 g

 The structure and formation of pollen

Pollen itself is not the male gamete. Each pollen grain contains vegetative (non-reproductive) cells (only a single cell in most flowering plants but several in other seed plants) and a generative (reproductive) cell. In flowering plants the vegetative tube cell produces the pollen tube, and the generative cell divides to form the two sperm cells.

Formation

Pollen is produced in the 'microsporangium' (contained in the anther of an angiosperm flower, male cone of a coniferous plant, or male cone of other seed plants). Pollen grains come in a wide variety of shapes (most often spherical), sizes, and surface markings characteristic of the species (see electron micrograph, right). Pollen grains of pines, firs, and spruces are winged. The smallest pollen grain, that of the forget-me-not (Myosotis spp.), is around 6 µm (0.006 mm) in diameter. Wind-borne pollen grains can be as large as about 90–100 µm.

In angiosperms, during flower development the anther is composed of a mass of cells that appear undifferentiated, except for a partially differentiated dermis. As the flower develops, four groups of sporogenous cells form within the anther. The fertile sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac. Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells.

In a process called microsporogenesis, four haploid microspores are produced from each diploid sporogenous cell (microsporocyte, pollen mother cell or meiocyte), after meiotic division. After the formation of the four microspores, which are contained by callose walls, the development of the pollen grain walls begins. The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine. The exine is what is preserved in the fossil record. Two basic types of microsporogenesis are recognised, simultaneous and successive. In simultaneous microsporogenesis meiotic steps I and II are completed prior to cytokinesis, whereas in successive microsporogenesis cytokinesis follows. While there may be a continuum with intermediate forms, the type of microsporogenesis has systematic significance. The predominant form amongst the monocots is successive, but there are important exceptions.

In the microgametogenesis, the unicellular microspores undergoes mitosis and develops into mature microgametophytescontaining the gametes. In some flowering plants, germination of the pollen grain often begins before it leaves the microsporangium, with the generative cell forming the two sperm cells.

Structur

Except in the case of some submerged aquatic plants, the mature pollen-grain has a double wall. The vegetative and generative cells are surrounded by a thin delicate wall of unaltered cellulose called the endospore or intine, and a tough resistant outer cuticularized wall composed largely of sporopollenin called the exospore or exine. The exine often bears spines or warts, or is variously sculptured, and the character of the markings is often of value for identifying genus, species, or even cultivar or individual. The spines may be less than a micron in length (spinulum, plural spinuli) referred to as spinulose (scabrate), or longer than a micron (echina, echinae) referred to as echinate. Various terms also describe the sculpturing such as reticulate, a net like appearance consisting of elements (murus, muri) separated from each other by a lumen (plural lumina).

The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma; it protects the vital genetic material from drying out and solar radiation. The pollen grain surface is covered with waxes and proteins, which are held in place by structures called sculpture elements on the surface of the grain. The outer pollen wall, which prevents the pollen grain from shrinking and crushing the genetic material during desiccation, is composed of two layers. These two layers are the tectum and the foot layer, which is just above the intine. The tectum and foot layer are separated by a region called the columella, which is composed of strengthening rods. The outer wall is constructed with a resistant biopolymer called sporopollenin.

The pollen tube passes through the pollen grain wall by way of structures called apertures. The apertures are various modifications of the wall of the pollen grain that may involve thinning, ridges and pores. They allow shrinking and swelling of the grain caused by changes in moisture content. Elongated apertures or furrows in the pollen grain are called colpi (singular: colpus) or sulci (singular: sulcus). Apertures that are more circular are called pores. Colpi, sulci and pores are major features in the identification of classes of pollen. Pollen may be referred to as inaperturate (apertures absent) oraperturate (apertures present). The aperture may have a lid (operculum), hence is described as operculate. However the term inaperturate covers a wide range of morphological types, such as functionally inaperturate (cryptoaperturate) and omniaperturate.

The orientation of furrows (relative to the original tetrad of microspores) classifies the pollen as sulcate or colpate. Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad. If the pollen has only a single sulcus, it is described as monosulcate. Colpate pollen has furrows other than across the middle of the outer faces. Eudicots have pollen with three colpi (tricolpate) or with shapes that are evolutionarily derived from tricolpate pollen. The evolutionary trend in plants has been from monosulcate to polycolpate or polyporate pollen.

Pollination

 The transfer of pollen grains to the female reproductive structure (pistil in angiosperms) is called pollination. This transfer can be mediated by the wind, in which case the plant is described as anemophilous (literally wind-loving). Anemophilous plants typically produce great quantities of very lightweight pollen grains, sometimes with air-sacs. Non-flowering seed plants (e.g. pine trees) are characteristically anemophilous. Anemophilous flowering plants generally have inconspicuous flowers.Entomophilous (literally insect-loving) plants produce pollen that is relatively heavy, sticky and protein-rich, for dispersal byinsect pollinators attracted to their flowers. Many insects and some mites are specialized to feed on pollen, and are calledpalynivores.

In non-flowering seed plants, pollen germinates in the pollen chamber, located beneath the micropyle, underneath the integuments of the ovule. A pollen tube is produced, which grows into the nucellus to provide nutrients for the developing sperm cells. Sperm cells of Pinophyta and Gnetophyta are without flagella, and are carried by the pollen tube, while those ofCycadophyta and Ginkgophyta have many flagella.

When placed on the stigma of a flowering plant, under favorable circumstances, a pollen grain puts forth a pollen tube, which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the micropyle of an ovule. The nucleus of the tube cell has meanwhile passed into the tube, as does also the generative nucleus, which divides (if it hasn't already) to form two sperm cells. The sperm cells are carried to their destination in the tip of the pollen-tube.

Pollen in the fossil record

Pollen's sporopollenin outer sheath affords it some resistance to the rigours of the fossilisation process that destroy weaker objects; it is also produced in huge quantities. There is an extensive fossil record of pollen grains, often disassociated from their parent plant. The discipline of palynology is devoted to the study of pollen, which can be used both for biostratigraphy and to gain information about the abundance and variety of plants alive — which can itself yield important information about paleoclimates. Pollen is first found in the fossil record in the late Devonian period and increases in abundance until the present day.